Contents

Preface		xxv
Reviewers		xxvii
About the A	Authors	xxix
SECTION (ONE. BASIC ACOUSTICS AND INSTRUMENTATION	
Chapter 1.	Physical Properties of Sound	3
•	Energy	3
	Opposing Forces	4
	Units of Measurement	5
	Sound Energy	6
	Compression and Rarefaction	9
	Frequency	10
	Intensity	11
	Limits of Human Frequency Detection	11
	Summary	12
	Review Questions	12
Chapter 2.	Ratios, Logarithms, and Decibels	13
	Why Do We Need The Decibel?	13
	Creating a More Workable Numbering System for Measuring Sound	
	and Hearing	13
	Base 10 Exponents	14
	Expressing Pressure Measurements with Base 10 Exponents	<i>a</i> =
	and Significant Digits	15
	Adding and Subtracting Numbers in Scientific Notation	16
	Logarithms Are Based On Exponents	16
	Logarithms of Numbers With Only 1 and 0	16
	Logarithms of Numbers Other Than 1 and 0	17
	Why Are Logs and Antilogs Important? Antilogs	17 18
	The Log of X Times Y	18
	Log of (X Divided by Y)	18
	Hints on Using the Calculator	18
	Obtaining the Log of a Number That Is Raised to a Power	18
	The Decibel	19
	Power	19
	Doubling Power	20
	Pressure	20
	Doubling Power Does Not Double Pressure	22
	Doubling the Distance from the Source	22
	More Practice at Calculating Sound Pressure Levels	23
	More Practice at Calculating Intensity Levels	23

	Relative Powers and Pressures	24
	Adding Decibels	25
	Summary	26
	Review Questions	26
Chapter 3.	Further Examination of Properties of Sound	27
	Speed of Sound Transmission	27
	Wavelength	28
	Period	28
	Relationship of Period and Wavelength	29
	Sound Transmission Effects	30
	Diffraction and Reflection	30
	Sound Absorption, Transmission Loss, and Reverberation Time	32
	The Doppler Effect	32
	Sonic Booms and Thunder	33
	Temperature Changes Affect Speed of Sound	33
	Wind Effects	34
	Types of Decibel Scales	34
	Review of dB SPL and dB IL	34
	dB Increase	35
	dB HL and dB SL	35
	Introduction to the Audiogram	36
	Summary	37
	Review Questions	37
Chapter 4.	The Sine in Sine Waves, Other Types of Sound Waves,	
	and Introduction to Filters and Frequency Analysis	39
	Triangles and Sines	39
	Plotting Sine Waves	41
	Simple Harmonic Motion, the Pendulum, and the Circle	42
	Molecular Vibration and the Sine Wave	43
	How We Calculate Sine Wave Relative Amplitude When Phase Is	
	Known (or Calculated)	45
	How We Calculate Sine Wave Phase When Time and Frequency	
	Are Known	46
	Review Questions	46
	Velocity and Acceleration	46
	Phase Relationships of Particle Displacement, Velocity, and Acceleration	46
	Complex Sound	47
	Summing Pure Tones That Differ Only in Phase or Amplitude	47
	Summing Pure Tones That Differ in Frequency	48
	Harmonics and Distortion Products	52
	Harmonic Distortion	52
	Other Distortion Tones	<i>52</i>
	Air Molecule Vibration Patterns for Complex Sounds	<i>53</i>
	Fourier's Theorem	53
	Common Types of Tones and Noise	<i>55</i>
	Square, Triangular, and Sawtooth Waves	55

		CONTENTS	vii
	A souling do and Free source Madelatine Done Tours		
	Amplitude and Frequency Modulating Pure Tones		<i>55</i>
	White and Pink Noise The Clieb (Transport) Signal		<i>57</i>
	The Click (Transient) Signal Waveform Rise and Fall Envelopes		59 61
	Introduction to Filtering		63
	Summary		65
	References		66
	Additional Review Questions		66
Chapter 5.	Impedance, Energy Transfer, and Resonance		67
Chapter 3.	Impedance Impedance		67
	Mass and Stiffness Forces are 180 Degrees Out of Phase		68
	Formula for Impedance		69
	The Meaning of Impedance (Z)		70
	The Meaning of Phase Angle		71
	Impedance of a Medium		72
	Alternative Formula for Impedance		73
	Acoustic Admittance		74
	Energy Transfer		74
	Resonance of Systems		76
	Standing Waves and Resonance of Tubes		77
	Standing Waves		77
	Resonance of a Tube Closed at One End		79
	Why a Glass Beer Bottle Resonates When You Blow Across		
	the Top, but a Plastic Soda Bottle Not So Much		83
	Resonance of a Tube Closed at Both Ends		83
	Summary		84
	References		84
	Review Questions		84
Chapter 6.	Electricity and Analog Systems		87
	Electron Flow		87
	Ohm's Law		90
	Electrical Circuits		91
	What Is Alternating Current (AC) Electricity?		92
	How is AC Sound Created by an AC-Powered Amplifier Circuit? Is It		0.0
	Different Than in a DC-Powered Amplifier?		92
	Introduction to Common Analog Commonants		93
	Introduction to Common Analog Components Microphones		93 93
	Microphones Amplifiers		93 94
	Filters		94 94
	Calculating Filter Cutoff Frequencies		9 4 95
	Cutoff Frequencies Defined at 3-dB Down Points		96
	Speakers		96
	Transducers		96
	Volume Controls		97
	Frequency Response Controls		97
	- • •		

	Summary	97
	Review Questions	97
Chapter 7.	Digital Systems and Digital Signal Processing	99
	Bits and Sampling Rates	99
	How Big Is That?	99
	How Often Should Amplitude Be Measured?	100
	Building an Analogy to Use Later	101
	Additional Digitization Concepts	101
	Analog to Digital Converters	101
	Nyquist Frequency	101
	Aliasing	102
	Anti-Aliasing Filtering	102
	Digital to Analog Converters	103
	Imaging	103
	Anti-Imaging Filters	103
	Overview of What a Digital System Can Do	103
	Fast Fourier Transform (FFT) Analysis of Auditory Signals	104
	Windowing	104
	Overlapping Windows	107
	Goal of FFT Analysis	107
	FFT Resolution	108
	Example FFT Results	109
	Digital Noise in the FFT Analysis	110
	Calculating Noise per Bin and Decibel of Bandwidth per Bin	111
	Time-Domain Signal Averaging	112
	Hearing Aid Digital Noise Reduction	114
	Summary Review Questions	115 116
	Review Questions	110
Chapter 8.	Equipment Used in Audiology and Hearing Science	119
	Audiometers	119
	Signal Generators	121
	Sound Booths	123
	Immittance Devices (Middle Ear Analyzers)	124
	Tympanometers	124
	Measurements of Middle Ear Absorption and Reflectance	128
	Acoustic Stapedial Reflex Measurement	129
	Otoacoustic Emission Devices	129
	Spontaneous Otoacoustic Emission Measurement Transient-Evoked Otoacoustic Emission Measurement	129
	Distortion-Product Otoacoustic Emission Measurement	130
	Signal Processing Used in Analysis of All Types of Otoacoustic	130
	Emission Measurements	131
	Auditory Evoked Response Measurement Systems	131
	Common Mode Rejection	132 132
	Time-Domain Signal Averaging and Artifact Rejection	133
	Filtering the Evoked Response	133 134
	Hearing Aid Analyzers	134
		1,71

SECTION TWO	INTRODUCTION TO	SPEECH ACOUSTICS
SECTION INVO.		SF ELGIT AGGGGTTGG

Chapter 9.	Classification of Speech Sounds	171
-	Consonants, Vowels, and Dipthongs	171
	Consonants Are Categorized By Place of Articulation, Manner of	
	Articulation, and Voicing	171
	Alveolar Sounds	172
	Palatal Sounds	173
	Glottal Sound	173
	Velar Sounds	173
	Linguadental Sounds	174
	Bilabial Sounds	174
	Labiodental Sounds	175
	Vowels Differ in Tongue Height, Placement, Tension, and Lip Rounding	175
	Front Vowels	175
	Central Vowels	175
	Back Vowels	176
	Summary	176
	Review Questions	177
Chapter 10.	Acoustics of Speech	179
	How Speech Sound Waveforms Can Be Viewed	179
	Fundamental Frequency, Glottal Pulses, Harmonics, and Format Frequencies	182
	Acoustic Characteristics of Vowels	183
	Formant Frequencies Are Created by Resonance of the Vocal Tract	183
	F1 and F2 of Vowels	184
	Intensity of Vowel Sounds	184
	Low Importance of Vowels for Speech Understanding	185
	Acoustic Characteristics of Consonants	185
	Stop Consonants Contain Wideband Energy	185
	Voice Onset Time Distinguishes Voiced and Unvoiced Sounds	186
	Formant Frequency Transitions Provide Additional Acoustic Cues	186
	Fricatives Have Longer Duration and More High-Frequency Energy	187
	Affricatives Have Characteristics of Both Plosives and Fricatives	187
	Nasals Have Low-Frequency Energy (Nasal Murmur) and Antiresonances	187
	Glides Are Characterized by Vowel Formant Transitions	190
	Intensity of Consonants	191
	Importance of Consonants for Speech Understanding	192
	Summary	192
	Reference	193
	Review Questions	193
SECTION T	HREE. ANATOMY AND PHYSIOLOGY OF THE EAR	
Chapter 11.	Overview of Anatomy and Physiology of the Ear	197
	Anatomic Terms for Location	197
	Anatomic Views	197

	General Sections of the Ear	199
	The Temporal Bone	200
	Lobes of the Brain	200
	Overview of Physiology	201
	Summary	202
	References	202
	Review Questions	202
Chapter 12.	Introduction to the Conductive Mechanisms	203
-	The External Ear	203
	The Middle Ear	204
	The Tympanic Membrane	205
	The Middle Ear Space	206
	The Ossicles	207
	Overview of How Middle Ear Ossicular Motion Permits Hearing	207
	Middle Ear Muscles	207
	The Eustachian Tube	207
	Medial Wall	208
	Posterior Wall	208
	The Lateral or Tympanic Wall	209
	Anterior Wall	210
	Superior Wall	210
	Inferior Wall	210
	Summary	211
	Review Questions	211
Chapter 13.	Introduction to the Physiology of the Outer and Middle Ear	213
	Resonances of the External Ear	213
	Energy Transfer through the Middle Ear	214
	Impedance Mismatch between Air and Cochlear Fluids	214
	The Middle Ear as an Impedance-Matching Transformer	214
	Ossicular Lever	214
	Areal Ratio	216
	The Acoustic Reflex	217
	Summary	219
	References	219
	Review Questions	219
Chapter 14.	Bone-Conduction Hearing	221
	Bone-Conduction Mechanisms	221
	Skull Vibration: Distortional Aspect of Bone-Conduction Hearing Introduced	221
	Inertial Aspects of Bone Conduction	222
	Further Discussion of the Distortional Aspects of Bone Conduction	222
	Osseotympanic Aspects of Bone Conduction: Bone Conduction	
	by Air Conduction	223
	Hearing Is Tested by Air and Bone Conduction	224
	Bone Conduction by Air Conduction (Osseotympanic Bone Conduction)	
	and the Occlusion Effect	224

	Summary	228
	References	228
	Review Questions	228
Chapter 15.	Advanced Conductive Anatomy and Physiology	229
	Pinna	229
	Embryologic Development	229
	Landmarks	229
	Physiology of the Pinna	231
	External Auditory Meatus	232
	Detailed Anatomy	232
	Proximity of the Temporomandibular Joint	234
	Proximity of Nerves to the External Auditory Meatus	234
	Skin of the External Auditory Meatus	235
	Cerumen	235
	Detailed Physiology of the External Auditory Meatus	236
	Tympanic Membrane	239
	Slant and Cone Depth	239
	Third Impedance Matching Transformer Mechanism	239
	Detailed Study of the Ossicular Chain	240
	Resonance of the Middle Ear	241
	Mass and Stiffness of the Middle Ear Affect Sound Transmission	2/4
	Differently at Different Frequencies	241
	Pathology Changes Middle Ear Sound Transmission	243 246
	Acoustic Reflex Physiology Reflex Latency	
	Reflex Latency Reflex Adaptation	246 246
	Reflex Threshold	$\frac{240}{247}$
	Summary	247
	References	248
	Review Questions	248
	Review Questions	240
Chapter 16.	Introduction to the Sensory Mechanics	249
	The Bony Labyrinth	249
	The Membranous Labyrinth	250
	The Vestibular System	250
	The Cochlea	251
	Structures within the Cochlea	252
	Gross Structures	252
	Fine Details of Features in the Cochlea	252
	Mass and Stiffness Differences along the Basilar Membrane	254
	Review of How the Detailed Features Fit Within the Larger Picture	255
	Cochlear Blood Supply Lagrangetical of the Cochlean	256
	Innervation of the Cochlea	257
	Summary References	258 250
		259 250
	Review Questions	<i>259</i>

Chapter 17.	Advanced Study of the Anatomy of the Cochlea	261
	Hair Cell Height and Number	261
	Stereocilia and Their Tip Links and Side Links	262
	Supporting Cells	263
	Chemical Composition of Endolymph and Perilymph	265
	Comparative Electrical Charges of Fluids in the Cochlea	265
	Potassium Influx Regulates Calcium Coming Into Hair Cells	266
	Ion Changes in the Hair Cell and Circulation of Ions	266
	Neurotransmitter Release	269
	Summary	269
	Review Questions	270
Chapter 18.	Introduction to Cochlear Physiology	271
	Arrangement of the Cilia Relative to the Tectorial Membrane	271
	Mass/Stiffness Gradient of the Basilar Membrane	272
	Review of Divisions and Membranes within the Cochlea	273
	The In-and-Out Motion of the Stapes Footplate Becomes an	
	Up-and-Down Motion of the Basilar Membrane, Called the	
	Traveling Wave	275
	The Location of the Maximum Place of Movement on the Basilar	
	Membrane Is Determined by the Sound Frequency	276
	An Unfortunate Untwisting of Fate	277
	The Height of the Traveling Wave Envelope Is Related to Sound	
	Intensity	277
	Ciliary Shearing	278
	Returning to the Concept That the Up-and-Down Basilar Membrane	2=4
	Motion Creates Side-to-Side Shearing of the Hair Cell Cilia	278
	Shearing of Cilia Opens Microchannels (Mechanoelectrical Transduction	
	Channels) in the Cilia and Creates Chemical Changes in the Hair	270
	Cell Body The Octor Heig Cell Active Mechanism Falcones the Metian of the	279
	The Outer Hair Cell Active Mechanism Enhances the Motion of the	270
	Inner Hair Cell Cilia	279
	Hearing Requires Inner Hair Cell Stimulation	281 281
	Summary Reference	
		282 282
	Review Questions	202
Chapter 19.	More Hair Cell Physiology	283
	Calcium and Potassium Channels, Prestin, and Active Cilia	283
	Review of Cellular Chemistry Changes	283
	Prestin Protein Contraction Creates the Active Mechanism	284
	Hair Cell Cilia Also Appear to Have Active Properties	284
	Tip Links and MET Channels in Outer and Inner Hair Cell Stereocilia	280
	Otoacoustic Emissions Are Sounds that Come from the Cochlea as a	= .
	Result of the Active Mechanism(s) of the Outer Hair Cells	286
	Are Cilia Responsible for Otoacoustic Emissions?	287
	What Are the Places on Basilar Membrane for Creation of the	201
	Otoacoustic Emission?	287

	Prestin Knockout Mice	289
	Tip Links and Insertion Plaques: Slow Cilia Adaptation	289
	Apoptosis: a Better Way for Hair Cells to Die	293
	Reactive Oxygen Species	293
	Antioxidants	294
	Melanin to the Rescue	294
	How the Traveling Wave Is Altered by the Active Mechanism	
	of the Cochlea	294
	Two-Tone Suppression Is Related to the Active Mechanism	295
	Summary	296
	Reference	298
	Review Questions	298
Chapter 20.	Overview of Cochlear Potentials and the Auditory	
	Nervous System	301
	Chemical Changes in the Hair Cells and Neurons	301
	The Cochlear Microphonic	301
	The Summating Potential	302
	Action Potentials	303
	Pattern of Neural Firing Encodes Frequency and Intensity	305
	The Primary Afferent Auditory Pathway	305
	Location of Afferent Neuron Dendrites	305
	Course of the VIIIth Nerve	307
	Cerebellopontine Angle	307
	Nuclei	307
	Primary Auditory Cortex	310
	Introduction to Efferent Neurons	310
	Summary	311
	References	312
	Review Questions	312
Chapter 21.	Advanced Study of Cochlear and VIIIth Nerve Potentials	315
	Characteristic Frequency	315
	Cochlear Resting Potentials	315
	Endocochlear Potential	316
	Intracellular Potentials	316
	Cochlear Receptor Potentials	316
	Cochlear Microphonic	316
	Summating Potential	317
	Comparison of the Tuning of the Cochlear Microphonic and the	210
	Summating Potential Summary of Cooklear Microphopia and Summating Potential	318
	Summary of Cochlear Microphonic and Summating Potential Action Potentials	318 319
	Electrical Potentials in Neurons	319
	N1 and N2 Responses of the VIIIth Nerve	321
	Refractory Period	322
	Spontaneous Discharge Rates	323
	Threshold of Neural Firing Is Related to Spontaneous Discharge Rate	323
	Firing Rates Are Influenced by Efferent Innervation	324

	The Auditory Cortex	357
	Summary	359
	References	360
	Review Questions	360
Chapter 23.	The Efferent Auditory System	363
	Olivocochlear Bundle	363
	Medial Efferent System	364
	Lateral Efferent Systems	364
	Crossed and Uncrossed Efferent Fibers	364
	Effect of Activation of the Efferent System	365
	Medial Efferent System Activation	365
	Lateral Efferent System Activation	365
	Memory Aids	366
	Other Efferent Pathways	366
	The Acoustic Reflex	366
	Stapedial Reflex Pathway	366
	Effect of Stapedial Reflex Contraction	367
	Role of Tensor Tympani	368
	Acoustic Reflexes Elicited by Nonauditory Stimuli	368
	Summary	369
	Review Questions	369
Chapter 24.	Introduction to Peripheral Vestibular Anatomy and Physiology	371
	The Vestibular System: Bony and Membranous Labyrinths	371
	Arrangement of the Semicircular Canals	372
	Planes of the Canals of the Right and Left Ears Are Aligned	373
	Anatomy and Physiology of the Semicircular Canals	374
	Structures within the Ampullae of the Semicircular Canals	374
	Angular Head Motion Directions	375
	Cilia and Kinocilium in the Ampullae	375
	Direction of the Endolymph/Cupula Movement That Is Excitatory	376
	The Utricle and the Saccule	377
	Hair Cells of the Utricle and Saccule	377
	Vestibular Branch of the VIIIth Nerve	379
	Summary	379
	Reference	381
	Further Reading	381
	Review Questions	381
Chapter 25.	Introduction to Central Vestibular Anatomy and Physiology	383
	Functions of the Balance System	383
	Awareness of Head Position	384
	The Vestibulo-Ocular Reflex	384
	Ewald's First Law	385
	Muscles Controlling Eye Movements	385
	Cranial Nerves of the Extraocular Muscles	385
	Pathways From the Vestibular Nucleus to the Nerves Controlling	
	Eye Movement	386

	Neural Control of Eye Deflection During Head Turn	386
	Limited Range of Eye Deflection	<i>387</i>
	Nystagmus: Repeated Slow Drift, Rapid Saccadic Return Motion	387
	Introduction to Ewald's Second Law	388
	Summary of the Vestibulo-Ocular Reflex and Introduction to	200
	Videonystagmography Testing	388
	Velocity Storage	389
	Reflexes of the Balance System for Postural Control	390
	Vestibulospinal Reflex	390
	Cervico-Ocular Reflex	390
	Cervicospinal and Cervicocollic Reflexes	390
	Vestibulocervical and Vestibulocollic Reflexes	392
	Summary of the Functions of Balance and Clinical Implications	392
	Summary	<i>396</i>
	Review Questions	397
Chapter 26.	Advanced Vestibular Anatomy and Physiology	399
	Size of the Vestibular System	400
	Endovestibular Potentials	400
	Frequency in the Vestibular System	401
	The Vestibulo-Ocular Reflex in Response to Head or Body Rotation:	
	Superimposed Nystagmus Beats	401
	Frequency in Caloric Testing	404
	Morphology of the Hair Cells of the Crista Ampullaris	406
	Is There an Active Mechanism in the Vestibular System?	407
	Characteristics of the First-Order Vestibular Neurons	407
	Calyx, Bouton, and Dimporphic Neurons	407
	Characterization of Neurons by Diameter	408
	Neural Firing Rates and Patterns	408
	Peripheral Areas of the Ampulla Encode Low-Frequency Stimulation	409
	Afferent Neurotransmitters	409
	Bidirectional Change in Firing Rate of Afferent Neurons	409
	Efferent Innervation of the Crista Ampullaris	410
	Detailed Study of Eye Muscle Attachments	411
	Review of the Eye Muscles	411
	Eye Movement from Superior/Inferior Obliques and Superior/	
	Inferior Recti: Not Exactly As Expected From the Diagrams	411
	Influence of the Canals	412
	Tonic Contraction in the Absence of Movement, Head Movement	(4.0
	Alters Contraction Strength	412
	Analogy of a Catamaran	413
	Horizontal Canal Control of Eye Movement	413
	Vertical Semicircular Canal Mediated Control of Eye Movement	416
	Left Posterior Canal	416
	Right Posterior Canal	417
	Left Anterior Canal	417
	Right Anterior Canal	418
	Semicircular Canal Neural Connections	419
	Review of Gross Vestibular Neural Anatomy	419

	Excitatory and Inhibitory Responses in the Second-Order Vestibular	
	Neurons	419
	Connection to the Cranial Nerves That Control Eye Movement	419
M	acula and Its VOR Pathways	425
	Review of the Structure and Function of the Macula of the Utricle	
	and Saccule	425
	The Otoconia Cause the Macula to Sense Gravity and Respond to	
	Head Tilt	426
	Connections Between Utricle and Extraocular Muscles	427
	Connections Between the Saccule and Extraocular Muscles	427
	Type I and Type II Hair Cells of the Macula	428
N	eural Plasticity in the Central Vestibular System	428
	immary	428
Re	eferences	429
Re	eview Questions	429
SECTION FOU	IR. BASIC PSYCHOACOUSTICS	
_	troduction to Psychoacoustics	433
Tl	nreshold (in Decibel Sound Pressure Level) for Pure Tones Depends	
	on Frequency	434
Tv	vo Ears Are Better Than One	435
\mathbf{U}_{1}	nder Ideal Circumstances, a Person Can Detect a 1-dB Intensity	
	Change	436
In	General, a 10-dB Increase in Intensity is about a Doubling of	
	Loudness (Some Studies Say 6 dB)	436
Lo	oudness Grows a Bit Differently in the Low Frequencies:	
	An Introduction to Phon Curves	436
Pi	tch	437
	When Is a Pure Tone Tonal?	437
	Detecting Change in Pitch	437
	Doubling Frequency Creates a Musical Sameness But Not a	
	Doubling of Pitch	438
M	asking	438
	Upward Spread of Masking	439
	Critical Bands	439
Te	emporal Processing	440
	Sounds Are Louder and More Tonal if at Least One-Quarter-	
	Second in Duration	440
	Temporal Order Detection	440
	Gap Detection	441
	immary and Implications for Speech Perception	441
Re	eview Questions	441
_	assical Psychoacoustical Methodologies	443
Cl	assical Psychoacoustical Methods	444
	Method of Limits	444
	Effect of Instruction, Motivation, and Willingness to Guess	444

	Response Latency and False Positive Responses	445
	Effect of Using Increasing Versus Decreasing Intensity Runs	446
	Method of Adjustment	446
	Similarity of Results of Method of Adjustment and Method	770
	of Limits	448
	Method of Constant Stimuli	450
	Number of Trials and Step Size	450
	Introduction to Forced-Choice Methods	450
	Threshold Is Not 50% Correct Identification in a <i>n</i> -Interval	150
	Forced-Choice Procedure	452
	Introduction to Signal Detection Theory	452
	Adaptive Procedures	453
	Scaling Procedures	453
	Magnitude Estimation	453
	Magnitude Production	453
	Fractionation	454
	Cross-Modality Matching	454
	Summary	454
	Reference	454
	Review Questions	455
Chapter 29.	Signal Detection Theory and Advanced Adaptive Approaches	457
	Signal Detection Theory	458
	Understanding "Magnitude of the Sensory Event"	458
	Signal-Plus-Noise Perception	459
	Criterion Points for Decision Making, and How Hit and Correct-	
	Rejection Percentages Reveal Spacing Between the Noise	460
	and Signal-Plus-Noise Distributions	460
	Altering Subject Criteria in Signal Detection Theory and Receiver	165
	Operating Curves	465
	The Magic of d'	465
	Adaptive Methods to Determine the Signal Level that is Correctly	460
	Detected a Given Percentage of the Time	468
	Change the Rules for When to Increase/Decrease Magnitude in	469
	Order to Estimate Different Percent Correct Points	409
	Example of Rules Used to Find Threshold in a Three-Alternative Forced-Choice Experiment	469
	Adaptive Procedures Can Be Used to Obtain the Response	409
	Function Curve	470
	Disadvantage to a Block Up-Down Procedure	471
	Interleaving Runs	471
	Parameter Estimation by Sequential Testing	472
	Gridgeman's Paradox	472
	Preference Testing in Hearing Aid Customization	472
	Paired Comparisons	473
	Summary	474
	Reference	474
	Further Reading	474
	Review Questions	474

Chapter 30.	Threshold of Hearing, Loudness Perception, Just Noticeable	
•	Difference for Loudness and Loudness Adaptation	477
	Absolute Threshold of Hearing	478
	Minimal Audible Pressure and Minimal Audible Field	478
	Binaural and Equated Binaural Thresholds	480
	Effect of Stimulus Duration on Absolute Threshold	481
	Effect of Stimulus Repetition Rate	481
	Difference Threshold for Intensity (DLI)	482
	Spectral Profile Analysis	484
	Loudness Perception	485
	Loudness Level	486
	Decibel Scales Revisited	486
	Loudness Scaling	487
	Loudness Adaptation	489
	Temporary Threshold Shift	490
	Summary	491
	References	491
	Review Questions	492
Chapter 31.	Calculating Loudness	495
onapter 31.	Physiologic Correlates of Loudness and Loudness Growth	495
	The Transfer Function of the Ear	495
	Active Mechanism Less Effective at Low Frequencies	497
	Role of the Active Mechanism for Varying Intensity Level Sounds	497
	Spread of Activity along the Basilar Membrane	498
	Calculating Loudness of Pure Tones	498
	Complex Tone Loudness	499
	Summary	500
	References	500
	Review Questions	501
Chapter 32.	Basics of Pitch Perception	503
	Pitch Perception	503
	Limits of Tonal Perception	503
	Pitch Perception Is Intensity Dependent	504
	Pitch Perception Is Duration Dependent	504
	Pitch Scaling	504
	The Mel Scale of Pitch (and Other Pitch Scales)	504
	Octave Scales	507
	Bark Scale	507
	Just Noticeable Difference of Frequency	510
	Changes in DLF with Frequency	511
	Changes in DLF with Intensity	513
	Make Sure You are Measuring a DLF and Not a DLI!	513
	Perception of Two Tones and of Distortions	514
	Beats and Simple Difference Tones	514
	Aural Harmonics, Summation Tones, and Other Difference Tones	514
	Summary	515
	References	516
	Review Ouestions	516

		CONTENTS	XXI
Chapter 33.	Introduction to Masking		517
onapter 55.	Tone-on-Tone Masking		517
	Critical Bands		520
	Summary		522
	Reference		522
	Review Questions		523
Chapter 34.	More About Masking and Cochlear Frequency Distribution		525
	Masking Pure Tones With White Noise and Narrowband Noise:		
	Critical Bands and Critical Ratios		525
	Level per Cycle Calculations		525
	Critical Bands in Hz and in Decibels		527
	A Critical Band Is Also Called a Bark		<i>527</i>
	How Critical Bands Vary With Frequency		528
	Fletcher's Theory of Critical Ratio		528
	Equivalent Rectangular Bandwidths		529
	Other Ways to Evaluate Critical Bands		530
	Cochlear Maps From Critical Bands		532
	The Relationship Between DLF, Critical Ratios, and Equivalent		
	Rectangular Bandwidths		533
	Comodulation Release From Masking		534
	Remote Masking		535
	Summary and Some Further Analysis		537
	References		538
	Review Questions		538
Chapter 35.	Psychophysical Tuning Curves		539
	Psychophysical Tuning Curves (PTCS)		539
	How PTCs Are Obtained and Interpreted		539 539
	Correlation to Traveling Wave Locations		540
	Families of PTCs		540
	Tips, Tails, and $Q_{10 \text{ dB}}$ s		540
	Neural Tuning Curves Revisited		541
	The Link Between PTCs and Neural Tuning Curves		542
	Summary and a Confession		542
	Review Questions		542
Chapter 36.	Temporal Processing		545
	Review of Temporal Integration for Threshold-Level Stimuli		545
	Review of Duration Effects on Pitch Perception		545
	Gap Detection		546
	Gap Detection Ability Is a Function of Frequency		546
	Gap Detection Ability Is Related to the Auditory Filter Bandwidth		546
	Detection of Gaps in White Noise Uses the High-Frequency		
	Cochlear Filters		549
	Temporal Successiveness		549
	Temporal Discrimination		550
	Temporal Discrimination Relates to Distinguishing Voiced From		
	Unvoiced Consonants		550
	Temporal Modulation Transfer Functions		<i>551</i>

	Summary	551
	References	552
	Review Questions	552
Chapter 37.	Temporal Masking	553
•	Forward Masking: Masker Comes Before Probe Signal	553
	Magnitude of the Effect	553
	Physiologic Explanations	554
	Forward Masking Psychophysical Tuning Curves Are Sharper	554
	Backward Masking: Masker Follows Probe Signal	554
	Magnitude of the Effect	554
	Physiologic Explanation	554
	Summary	555
	Reference	555
	Further Reading	555
	Review Questions	555
Chapter 38.	Binaural Hearing	557
	Binaural Summation	<i>557</i>
	Improved DLI and DLF Ability Binaurally	<i>557</i>
	Binaural Beats	558
	Central Masking	<i>55</i> 8
	Binaural Fusion	<i>55</i> 8
	Localization	559
	Temporal Cues to Localization	559
	Intensity Differences	560
	Combined Effect of Intensity and Phase Differences	561
	Central Nervous System Cells Are Responsive to Phase or Intensity	
	Differences	561
	Lateralization	562
	Interaural Time Difference	562
	Interaural Intensity Differences	562
	Combined Effects of Intensity and Phase	563
	Why Is Lateralization a Different Phenomenon from Localization?	564
	Masking Level Differences	564
	Summary	565
	References	565
	Review Questions	565
Chapter 39.	Introduction to the Results of Psychoacoustical Assessment of Persons	
	With Hearing Impairment	567
	Effect of Hearing Loss on Audibility of Tones and Speech	567
	Effect of Loss Type and Severity	567
	Loss of Sensitivity for Pure Tones Predicts Loss of Speech	-/-
	Perception Ability	569 571
	Articulation Index Predictions of Speech Understanding Are Imperfect	571 572
	Cochlear Loss Causes Recruitment	572
	Difference Limens for Intensity Threshold Temporal Symmetries Effects	573
	Threshold Temporal Summation Effects	573

	CONTENTS	xxiii
Wide and Develophers leveled True in a Course		574
Widened Psychophysical Tuning Curves		<i>574</i>
Cochlear Dead Regions		<i>575</i>
Off-Frequency Listening		<i>575</i>
Audiometric Characteristics of Dead Regions		575
What Is Perceived When Off-Frequency Listening Occurs?		<i>576</i>
Psychophysical Tuning Curves for Dead Regions		<i>576</i>
Threshold Equalizing Noise (TEN) Test		<i>576</i>
Enhanced DLFs Near Dead Regions?		578
Amplification for Those With Dead Regions		578
Gap Detection Thresholds		579
Results With White Noise Stimuli		579
Gap Detection Results for Pure Tones Depend on Stimulus		
Intensity Levels		579
Gap Detection Levels Should Theoretically Be Better in Hearing-		
Impaired Persons		580
Temporal Modulation Detection Ability Is Good If the Signal Is		
Fully Audible		580
Ability to Detect Very Fast Signal Changes in Frequency and Amplitude	e	
Is Poorer Than for Normal Hearers		581
Poorer Pitch Perception Abilities		581
Failure to Take Advantage in Pauses in Interrupted Noise		581
Summary		582
References		583
Further Reading		583
Review Questions		583
Appendix A. The Math Needed to Succeed in Hearing Science		587
Appendix B. Answers to Review Questions		595
Index		615