CONTENTS

Preface xi
Reviewers xiii

1 Overview of the Neuroanatomy of Auditory Periphery and Brainstem 1
Scope 1
I. Auditory Periphery: Cochlear and Auditory Nerve Neuroanatomy 1
 Cochlea: Structure and Functional Implications 1
 Afferent Innervation of the Cochlea 4
 Formation of the Auditory Nerve 5
II. Neuroanatomy of the Auditory Brainstem 5
 Salient Features of Organization of Brainstem Structures and Pathways 5
 Cochlear Nucleus (CN) 7
 Superior Olivary Complex (SOC) 9
 Nuclei of Lateral Lemniscus (NLL) 11
 Inferior Colliculus (IC) 12
III. Efferent Pathways 14
 Efferent Innervation of the Cochlea 14
 Efferent Innervation of the IC 14
IV. Summary 16
V. Recommended Readings 17
 Excellent Reviews With Sufficient Detail 17
 References 17

2 Neural Activity Underlying Scalp-Recorded Evoked Potentials 19
Scope 19
I. Neuronal Physiology 19
 Structure of a Neuron 19
 Requirements for Neural Signaling 19
 Generation and Maintenance of the Resting Membrane Potential (RMP)-Polarized Cell 20
 Action Potential: Generation, Propagation, and Synaptic Transmission 21
II. Neural Bases of Evoked Potentials 24
III. Auditory Evoked Potentials (AEP): Classification and Types 27
IV. Summary 30
V. Recommended Readings 30
 Excellent Review of Dipoles and Overview of Neuronal Physiology 30
 References 30
6 Clinical Applications of the Auditory Brainstem Response: Differential Diagnosis

Scope 125

I. ABR in Conductive Hearing Loss (CHL) 125
 Effects on ABR Characteristics 125
 Effects of Chronic Middle Ear Infection on the Brainstem Response 129
 CHL Causes Structural and Functional Changes in the Auditory Brainstem 130

II. ABR in Cochlear Hearing Loss 133
 Effects on ABR Characteristics 133
 Relationship Between Magnitude of Latency Shift and Degree and Configuration of Cochlear Hearing Loss 133
 Relationship Between Slope of Wave V Latency-Intensity Function and Degree and Configuration of Cochlear Hearing Loss 135
 Effects of Cochlear Hearing Loss on ABR Interpeak Latencies 138

III. ABR in Auditory Nerve and Brainstem Lesions 139
 Effects on ABR Characteristics 139
 Effects of Auditory Nerve and Lower (Caudal) Brainstem Lesions on the ABR 139
 Abnormal Interpeak Latencies (IPL: I–III, I–V, and III–V) 141
 Abnormal Interaural Latency Difference in Wave V (ILDv) 142
 ABR Sensitivity Is Reduced in the Detection of Small Auditory Nerve Tumors 143
 Stacked ABR as a Method to Improve Detection of Small Acoustic Tumors 145
 Relationship Between ABR and Auditory Nerve Tumor Size 151
 Bilateral Effects of Auditory Nerve and Lower Brainstem Lesions 151
 Use of V/I Amplitude Ratio in the Detection of Auditory Nerve and Lower Brainstem Lesions 152

IV. ABR in Auditory Neuropathy (AN) and Cochlear Synaptopathy 153
 Introduction 153
 ABRs in Auditory Neuropathy 153
 ABRs in Cochlear Synaptopathy 155

V. ABR in Upper (Rostral) Brainstem Lesions 161
 ABR Characteristics 161

VI. ABR Test Strategy for Neurodiagnostic Evaluation of Site(s) of Lesion 162
 Choice of Stimulus Parameters 162
 Choice of Recording Parameters 163

VII. Summary 164
 References 165
Neurotologic Applications: Electrocochleography (ECochG) and Intraoperative Monitoring (IOM) 175

Scope 175

I. Electrocochleography (ECochG) 175
 Cochlear Microphonic (CM) 176
 Clinical Applications of the CM 178
 Summating Potential (SP) 180
 Clinical Applications of SP 182
 Whole-Nerve Compound Action Potential (CAP) 184

II. ABR Diagnostic Measure for Cochlear Hydrops: Cochlear Hydrops Analysis 190
 Masking Procedure (CHAMP)

III. The Electrical Compound Action Potential (eCAP) and Its Application in Cochlear Implants: Intracochlear ECochG 191
 Response Characteristics 191
 Clinical Applications 193

IV. Electrical ABR (eABR) and Its Application in Cochlear Implant Evaluation 194
 Response Characteristics of the Normal eABR 195
 Methods to Record and Analyze the eABR 197

V. Application of Auditory Nerve and Brainstem Responses in Intraoperative Monitoring 198
 Introduction and Rationale 198
 Surgical Approaches 199
 Commonly Used Measures for IOM 200
 IOM Procedures and Interpretation of Changes in Response During Surgery 204
 Stimulus 204
 Response Recording 205
 Response Interpretation and Reporting 206
 Hearing Preservation (HP) in IOM 206

VI. Summary 207
 References 210

Brainstem Evoked Responses to Complex Sounds: Characteristics and Clinical Applications 219

Scope 219

I. Envelope Following Response (EFR) 220

II. Response Characteristics of EFRs Elicited by SAM Tones 222
 Effects of Intensity 223
 Effects of Carrier Frequency 224
 Effects of Modulation Rate 225
 Effects of Age 226

III. Use of EFR in Auditory Threshold Estimation 227
 Air-Conduction Threshold Estimation in Adults and Infants With Normal Hearing (AC-EFR) 227
 Threshold Estimation in Adults and Infants With Sensorineural Hearing Loss 229
 Bone-Conduction Threshold Estimation in Normal and Hearing-Impaired Individuals (BC-EFR) 231

IV. EFRs Elicited by Speech Sounds 232
 Characteristics of Speech Stimuli 232
 Response Characteristics of the EFR to the CV Syllable /da/ 234
<table>
<thead>
<tr>
<th>Contents</th>
<th>235</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Stimulus Polarity on Speech-Evoked EFR</td>
<td></td>
</tr>
<tr>
<td>Test-Retest Reliability of the EFR</td>
<td></td>
</tr>
<tr>
<td>Stimulus Specificity of the EFR</td>
<td></td>
</tr>
<tr>
<td>Potential Clinical Applications of EFRs</td>
<td></td>
</tr>
<tr>
<td>Effects of Cochlear Impairment on Envelope Encoding</td>
<td></td>
</tr>
<tr>
<td>Utility of EFR in Hearing Aid Outcome Measure</td>
<td></td>
</tr>
<tr>
<td>V. Frequency Following Response (FFR)</td>
<td>240</td>
</tr>
<tr>
<td>General Description</td>
<td></td>
</tr>
<tr>
<td>Response Characteristics</td>
<td></td>
</tr>
<tr>
<td>Effects of Stimulus Level</td>
<td></td>
</tr>
<tr>
<td>Effects of Stimulus Frequency</td>
<td></td>
</tr>
<tr>
<td>VI. Frequency Following Responses to Complex Sounds</td>
<td>244</td>
</tr>
<tr>
<td>Frequency Following Responses Representing Cochlear Nonlinearity</td>
<td></td>
</tr>
<tr>
<td>FFRs Elicited by Time-Variant Speech-Like and Speech Sounds</td>
<td></td>
</tr>
<tr>
<td>VII. Cochlear Regions Contributing to the FFR</td>
<td>250</td>
</tr>
<tr>
<td>VIII. How Is the Population Response Reflected in the FFR Related to</td>
<td>253</td>
</tr>
<tr>
<td>Single-Neuron Activity?</td>
<td></td>
</tr>
<tr>
<td>IX. Neural Generators of the EFR/FFR</td>
<td>254</td>
</tr>
<tr>
<td>Early Research Supporting Brainstem Origin of the FFR</td>
<td></td>
</tr>
<tr>
<td>Current Views on the Neural Generators of the FFR</td>
<td></td>
</tr>
<tr>
<td>X. Clinical Applications of the FFR</td>
<td>257</td>
</tr>
<tr>
<td>XI. Recording and Analysis of EFR and FFR</td>
<td>261</td>
</tr>
<tr>
<td>Electrode Montage</td>
<td></td>
</tr>
<tr>
<td>Time-Domain Measures</td>
<td></td>
</tr>
<tr>
<td>Response Latency</td>
<td></td>
</tr>
<tr>
<td>Autocorrelation</td>
<td></td>
</tr>
<tr>
<td>Autocorrelogram (ACG)</td>
<td></td>
</tr>
<tr>
<td>Pitch Tracking Accuracy Using Autocorrelation</td>
<td></td>
</tr>
<tr>
<td>Phase Coherence</td>
<td></td>
</tr>
<tr>
<td>Frequency-Domain Measures</td>
<td></td>
</tr>
<tr>
<td>XII. Summary</td>
<td>268</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

9 Research Applications of the Frequency Following Response 281

Scope 281

I. Pitch: an Important Perceptual Attribute 281

Hierarchical Nature of Pitch Processing 283

II. Neural Representation of Pitch-Relevant Information of Complex Sounds 283

Neural Correlates of Pitch of Harmonic, Inharmonic, and Frequency-Shifted Sounds 283

Neural Correlates of Resolved Versus Unresolved Complex Sounds 287

Relative Roles of Envelope and Temporal Fine Structure in Pitch 291

Neural Correlates of Pitch Salience 294

Neural Representation of Speech in Adverse Listening Conditions 296

Effects of Reverberation 296

Effects of Background Noise 298

III. Neural Representation of Linguistic Pitch-Relevant Information in the Brainstem 300

Perceptual Attributes of Pitch in Tonal Languages 300

Language Experience–Dependent Plasticity in Pitch Processing in the Brainstem 301

Language Experience–Dependent Effects in the Brainstem Are Feature Specific 303
Domain Specificity of the Experience-Dependent Effects in the Brainstem 304
Experience-Dependent Effects Are More Resilient to Signal Degradation 306
Structural Versus Functional Asymmetries in Neural Representation 309
Hierarchical Processing as a Basis of Experience-Dependent Pitch Processing 311
IV. FFR Correlates of Binaural Processing 314
 FFR Correlates of Binaural Interaction 314
 FFR Correlates of Binaural Masking Level Difference (BMLD) 314
 FFR Correlates of Spatial Release From Masking 317
Neural Representation of Vocodered Speech Sounds 318
EFR/FFR Applications in Different Populations—Potential for Development of Clinical Measures 324
V. Summary 324
References 325

10 Auditory Brainstem Responses Laboratory Exercises 337
Scope 337
Preliminary Considerations for Recording Auditory Brainstem Responses 337
I. Effects of Stimulus Factors on the ABR Components 338
 Lab 1. Effects of Stimulus Intensity of Click-Evoked ABR 338
 Lab 2. Effects of Stimulus Intensity on the Broadband Chirp-Evoked ABR 340
 Lab 3. Effects of Stimulus Frequency on Tone Burst-Evoked ABR 340
 Lab 4. Effects of Stimulus Repetition Rate on the ABR 341
 Lab 5. Effects of Stimulus Rise-Fall Time 342
 Lab 6. Effects of Stimulus Onset Polarity on the ABR 343
II. Effects of Recording Parameters on the ABR 344
 Lab 7. Effects of Number of Sweeps on Averaging the ABR 344
 Lab 8. Effects of Recording Electrode Montage 345
 Lab 9. Effects of High-Pass and Low-Pass Analog Filter Settings on the ABR 345
III. Threshold Estimation Using the ABR 346
IV. Threshold Assessment in Babies (Birth to Six Months) 347
 Example of an ABR Protocol for Threshold Estimation in Babies 347
 Lab 11. Identification and AC-ABR Threshold Estimation From ABR Waveforms Recorded From Infants 349
V. Interpretation of ABRs to Determine the Site of Lesion 356
 Lab 12. Unmarked ABR Waveform Data (audiograms in some cases) 356
VI. Recording of Auditory Steady-State Response, Envelope Following Response, and Frequency Following Response 359
 Lab 13. Recording and Analysis of ASSR 359
 Lab 14. Recording and Analysis of EFRs and FFRs 359
VII. Protocol Consideration for Electrocochleography (ECochG) 360
VIII. Summary 360
IX. Recommended Reading 363

Index 365